Optimal Gersgorin-style estimation of extremal singular values
نویسندگان
چکیده
منابع مشابه
Nonnegative matrices with prescribed extremal singular values
We consider the problem of constructing nonnegative matrices with prescribed extremal singular values. In particular, given 2n−1 real numbers σ ( j) 1 and σ ( j) j , j = 1, . . . , n, we construct an n×n nonnegative bidiagonal matrix B and an n×n nonnegative semi-bordered diagonal matrix C , such that σ ( j) 1 and σ ( j) j are, respectively, the minimal and the maximal singular values of certai...
متن کاملOPTIMAL SHRINKAGE OF SINGULAR VALUES By
We consider recovery of low-rank matrices from noisy data by shrinkage of singular values, in which a single, univariate nonlinearity is applied to each of the empirical singular values. We adopt an asymptotic framework, in which the matrix size is much larger than the rank of the signal matrix to be recovered, and the signal-to-noise ratio of the low-rank piece stays constant. For a variety of...
متن کاملSingular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2005
ISSN: 0024-3795
DOI: 10.1016/j.laa.2005.01.024